
Background Processes
Background processing can be implemented in situations where processing requirements could cause significant
response time problems during dialog operation.

This is usually the case if a large number of database accesses or other time consuming processing is necessary.

Typical examples of this type of processing are complex deletion procedures, complex calculations or modifications,
which require access to a large number of data records.

Depending on specific requirements, background processes can either be started from an online dialog or from the
computer center.

The background program frame handles parameter transfer from the dialog system, error correction as well as
components to restart background processes in the event of an abnormal termination.

The following functions are provided for the end user:

online monitoring of background program execution;
online display of errors detected during background processing;
restart background processing following abnormal termination.

Background processes which are not implemented with the appropriate background frames cannot use the features
described above.

The following topics are covered below:

General Information
Creating and Maintaining Background Procedures
Invoking Background Processes
Start Background Program from Dialog
Implementing Background Programs
Implementing Computer Center Background Processes

General Information
Background procedures must be defined in the application shell for the background process to which the background
program belongs.

To invoke the background process, the subprogram ZXBG010N is called by the online program. For further
information see the corresponding procedure description.

This subprogram ensures that the parameters are transferred using a control record in a control file. This control
record is identified by a unique key (the timestamp).

The timestamp is passed as a standard parameter to the batch program.

The background process is then submitted to the operating system via a standard interface. The background
procedure is therewith submitted to the operating system from the dialog program. The background program is then
started.

The writing of a control record in the file Z_BG_PARM as well as the starting of the background process are
executed from the subprogram ZXBG010N.

1Copyright Software AG 2001

Background ProcessesBackground Processes

Therefore, it is necessary to ensure that the parameters are correctly set for the call and that the call to the
subprogram ZXBG010N is coded.

Creating and Maintaining Background Procedures

General

For each background process, operating-system-dependent background procedures are required.

Note:
Background procedures must be created prior to implementing background programs. The parameters for the
background procedures are required during the dialog call to the background process.

Using Administration Functions

The application shell is used to define background procedures.

Use the functions Add Background Procedure, Modify Background Procedure, etc., to create and maintain the
background procedure.

For a full description, see the Natural Application Shell documentation.

Types of Background Processing

A background procedure is not needed for each background process. Instead, the various types of background
processing should be identified and a background procedure for each corresponding type is created.

The following are examples of various types of background processes:

receipt of data from another system;
transfer of data to another system;
copying/deleting/modifying mass volumes of data;
printing of lists;
loading/unloading data.

Copyright Software AG 20012

Background ProcessesCreating and Maintaining Background Procedures

Invoking Background Processes

Calling a Background Program from a Dialog

A background program can be started from any dialog.

 To call the background program from a dialog

Enter CALLNAT ’ZXBG010N’ USING PZ_BG_START_BATCH.
This CALLNAT contains END TRANSACTION and BACKOUT TRANSACTION statements.

Note:
When writing programs which update data, you must ensure that the procedure is called at a point at which it will not
adversely affect the transaction logic of the dialog.

Parameter Usage

Both the background program and the background procedure needed for the execution of the background program
require certain parameters. These parameters must be passed by the dialog whenever the subprogram ZXBG010N is
invoked.

The required parameters can be displayed with the application shell function Display Background Procedure.

The parameters for the background program, for example, selection/sort criteria, which are assigned values in the
online program, must also be passed.

Detailed information on these parameters is contained in the procedure description.

3Copyright Software AG 2001

Invoking Background ProcessesBackground Processes

Start Background Program from Dialog
The subprogram ZXBG010N ensures that at runtime the parameters are transferred to the control file, from which
they can be read by the background program.

Natural Object Name: ZXBG010N

Parameter: ZXBG010A (PDA)

Parameters

Group PZ_BG_START_BATCH of the PDA ZXBG010A.

Copyright Software AG 20014

Background ProcessesStart Background Program from Dialog

Input/Output Parameter Variable Description

Input PZ_BG_PTS

Output PZ_BG_RSP 0 - Ok
1 - Background procedure not found
2 - Background parameter not found (restart)
3 - Background parameter not stored
9 - Error during submit call

Output PZ_BG_MSG_NUM

Output PZ_BG_MSG_FILL

Input PZ_BG_DELIM Input delimiter

Input PZ_BG_CLIENT_ID Client ID

Input PZ_BG_US_ID User ID

Input PZ_BG_PSW Password

Input PZ_BG_NAME Background process name or title (if applicable for the operating
system)

Input PZ_BG_LIB Library in which program will run

Input PZ_BG_PGM Program name to be executed

Input PZ_BG_NATPARM Natural parameter module

Input PZ_BG_PRIORITY Priority of the background procedure (if applicable for the
operating system)

Input PZ_BG_ONLINE_LIB Library from which the start of the background process is
invoked

Input PZ_BG_ONLINE_PGM Program to be called to start the background process

Input PZ_BG_FU_ID Function ID

Input PZ_BG_DESCR_LC Description

Input PZ_BG_LA_ID Language ID

Input PZ_BG_LA_NAT_CODE Natural language code

Input PZ_BG_CD_ID ID of the background procedure

Input PZ_BG_PRINTER (1:5) Printer name

Input PZ_BG_WORKFILE (1:5) Work file path and name

Input PZ_BG_SUST_NAME?(1:5) Name of substitution variable

Input PZ_BG_SUBST_VALUES
(1:5)

Content of substitution variable

Input PZ_BG_RESTART Restart indicator

Input PZ_BG_PGM_PARM (1:5) Parameter to be passed to the background program

5Copyright Software AG 2001

ParametersBackground Processes

Implementing Background Programs
The frame gallery provides three application frames for background processing:

Background program.
Load objects.
Unload objects

These are described in section Application Frames.

This section provides additional information on the use of the background program frame.

Passing Parameters
Logically Locking Data Records
Restart
Error Handling
Setting the Processing Status
Monitoring Program Execution

Passing Parameters

The background program receives a timestamp as an input parameter.

This timestamp is used to read the corresponding control record from the control file Z_BG_PARM. This is a part of
the frame functionality.

The parameters from the online program, for example, selection criteria, are made available. The transfer of
parameters is thereby automatic.

The parameters are available to the background program via the variable LZ_PGM_PARM.

Logically Locking Data Records

Data records can be logically locked by background programs.

This may be necessary, for example, if the data must be modified by the background program, and at the same time
processed by the dialog system.

Locking can also be required for read access. For example, a statistic which is based on certain data values requires
that these data records remain unchanged during execution of the calculation of the statistic.

Locking Data Records

Use the inline subroutine Z_CHECK_AND_LOCK_RECORD to lock individual data records, data areas or objects,
as required within a business application.

After execution of this subroutine, an END TRANSACTION must follow. The program must include the necessary
processing logic.

The parameters are contained in the LDA ZXFBA00L.

Copyright Software AG 20016

Background ProcessesImplementing Background Programs

Input/Output Parameter Variable Description

Input LZ_LOCK_OBJ_ID Identifier of the object type

Input LZ_LOCK_KEY The key of the record to be locked, or the beginning of the record range to
be locked.

Input LZ_LOCK_KEY_END The end of the record area to be locked.

Output LZ_VAL_ERR TRUE: Locking is not possible.

If LZ_VAL_ERR has a setting of TRUE, the subroutine also inserts an error number into the variable
LZ_MSG_NUM(1).

Example

 MOVE ’ARTICLE’ TO LZ_LOCK_OBJ_ID
 MOVE PZ_LOCAL.PZ_KEY TO LZ_LOCK_KEY

 PERFORM Z_CHECK_AND_LOCK_RECORD

 IF LZ_VAL_ERR
 BACKOUT TRANSACTION
 PERFORM Z_TERMINATE_PROCESS
 ELSE
 END TRANSACTION
 END-IF

Releasing Data Records

The background program frame does not contain any locking logic. Therefore, if you use the procedure for locking
data records, you must also release the records following completion of processing.

Use the inline subroutine Z_CANCEL_LOCK_RECORD for this purpose.

After execution of this subroutine, an END TRANSACTION must follow. The program must include the necessary
processing logic.

Restart

A background program can be restarted in the event it is terminated abnormally, provided that the portion of the
processing which has been successfully completed must not be repeated.

Restart logic is recommended when:

processing involving data modifications is to be executed, or
extensive list processing is to be executed.

As a prerequisite for implementing restart logic, the restart points must be logged at runtime.

This entry is written immediately prior to execution of an END TRANSACTION statement and is confirmed
together with the data modifications via the END TRANSACTION statement.

Use the inline subroutine Z_STORE_RESTART_DATA to write the restart data.

The call is contained in the background program frame. The data are written following logical transactions to the file
Z_BG_PARM.

7Copyright Software AG 2001

RestartBackground Processes

The number of transactions following which an END TRANSACTION statement is to be executed can be set using
the variable C#TRANSACTION. The default value for this variable is 99.

Before calling this procedure, the desired restart point, for example, the key value of a database record, must be
provided in LZ_RESTART_DATA(*).

The restart of the abnormally terminated background program is then performed via the application shell. For further
information, see the Natural Application Shell documentation.

With this function you can view/modify existing restart data, and then restart the background process.

The frames of the batch programs ensure that the restart data provided in the variable LZ_RESTART_DATA(*) are
received and are available for restart processing.

Error Handling

Errors which occur during background program execution can be logged. Differentiation between the following
types of errors must be made:

Natural runtime errors
Application errors

Natural Runtime Errors

Natural runtime errors can be detected in the background program with the ON ERROR statement and automatically
displayed in the application shell ’’Maintain Error Log" dialog.

All database modifications which were executed during the current, not yet successfully closed logical transaction,
are backed out of the database and the corresponding logical locks are released. This is a part of the frame
functionality.

Application Errors

Application errors can be handled in various ways:

termination of the background program with an entry in the error log file. The inline subroutine
Z_TERMINATE_PROCESS can be used for this purpose. Error handling is the same as that for Natural
runtime errors.
continuation of the background program with an entry (warning) in the error log file. The inline subroutine
Z_STORE_ERROR_LOG can be used for this purpose. After execution, an END TRANSACTION must
follow. In this case, the program can be closed with the status ’Process has ended with an error/warning’. This is
performed by the frames when the variable LZ_APPL_ERR is set to TRUE.

In each case, these subroutines must be supplied with the variables ZER_USER_DESC(1:4) and
ZER_APPL_ERR_NUM.

Display Error Log

Error logs can be displayed using the application shell function Browse Error Log.

For further information, see the Natural Application Shell documentation.

Setting the Processing Status

A background program is assigned a status when it is started from a dialog. This status can be displayed via the
application shell function Browse Background Process.

Copyright Software AG 20018

Background ProcessesError Handling

Terminating a Background Program

Normally the appropriate end status is set whenever the background program is ended. This status can however be
directly set to: ’Process ended with an error/warning’ by setting the variable LZ_APPL_ERR to TRUE.

Termination by Calling another Background Program

If a background program was called from another background program, and control is to be returned to the calling
program, the background status may not be modified.

This can be done by setting the variable LZ_CONTINUE to TRUE.

The last program of the background process will set the status to ENDED.

Monitoring Program Execution

The application shell provides various functions for monitoring background processes. The following information is
provided:

Function Information

Browse Background Process Status of user’s background processes

Browse Error Log Display errors

No access is available to the operating system itself, i.e., direct intervention with executing background processes is
not possible.

9Copyright Software AG 2001

Monitoring Program ExecutionBackground Processes

Implementing Computer Center Background Processes
No frame is available to implement background programs which are to be started by computer center personnel.

Note:
The background program is not intended for this purpose. It is intended only for the implementation of batch
programs which are to be started from a dialog program.

Error Handling

Natural runtime errors should be handled using the ON ERROR statement.

Monitoring Program Execution

The monitoring of batch jobs (status, restart) is not supported by the application shell.

Copyright Software AG 200110

Background ProcessesImplementing Computer Center Background Processes

	Background Processes
	General Information
	Creating and Maintaining Background Procedures
	General
	Using Administration Functions
	Types of Background Processing

	Invoking Background Processes
	Calling a Background Program from a Dialog
	Parameter Usage

	Start Background Program from Dialog
	Parameters

	Implementing Background Programs
	Passing Parameters
	Logically Locking Data Records
	Restart
	Error Handling
	Setting the Processing Status
	Monitoring Program Execution

	Implementing Computer Center Background Processes
	Error Handling
	Monitoring Program Execution

